subject:-
$\mathcal{H a l f}$ wave rectifier (obtaining a unidirectional voltage from
alternating)
\# it is the first application which is used to obtain a unidirectional voltage from 6idirectional (alternating) voltage source

+ve Half cycle
-ve Half cycle

Input

+ve Half cycle

-ve Half cycle

\# when the supply is $\mathfrak{A C}$ source with maximum voltage \mathcal{V}_{m} the supply has two direction of voltage (+ ve $\mathcal{H}-v e$) directions

* when the input is +ve fralf cycle, the diode is forward biased ef acts as a short circuit (ideal) or a Gattery in the $2^{\text {nd }}$ approximation and there is output voltage with maximum value $=$ maximum of I / p signal(ideal)
Or
$=$ maximum of I / p signal $-\mathcal{V}_{\mathcal{D}}$ (practical)

There are three types of voltage to describe sine wave
1 - Maximum value $=$ peak value
2 - RNS (root main square) =effective value =maximum value $/ \sqrt{2}$
3 -ave rage value $=\mathcal{D C}$ value $=$ me an value
$V_{\mathcal{D C}}=$ are a under the curve/time effective of cycle 1 -for I / p signal

$\mathcal{V}_{\mathcal{D C}}=\operatorname{area} / 2 \Pi={ }_{0}{ }^{\text {汪 }}\left(\mathcal{V}_{m} \sin w t d w t\right) / 2 \Pi$
$\mathcal{V}_{\mathcal{D C}}=$ zero

2- For output wave form

$\mathcal{V}_{\mathcal{D C}}={ }_{0}{ }^{j \Pi}\left(\mathcal{V}_{m} \sin w t d w t\right) / 2 \Pi=\mathcal{V}_{m} / \Pi$

3- If the output wave form

$\mathcal{V}_{\mathcal{D C}}=\left(\Pi * \mathcal{V}_{m}+0\right) / 2 \Pi=\mathcal{V}_{m} / 2$
4- If the output wave form

$\mathcal{V}_{\mathcal{D C}}=\left(.5^{*} \Pi * \mathcal{V}_{m}+0\right) / 2 \Pi=\mathcal{V}_{m} / 4$
$I_{\mathcal{D C}}=\mathcal{V}_{\mathcal{D C}} / \mathcal{R}_{\mathcal{L}}=\mathcal{V}_{m} / \Pi \mathcal{R}_{\mathcal{L}}$

Note

1- The output has some ripples with factor (r)
$r=($ RNS of output wave form) / (DC value of output wave form)
$r=\left(\left(I_{r m s} / I_{\mathcal{D C}}\right) 2-1\right)^{1 / 2}$
2- for the output of $\mathcal{H a l f}$ Rectifier of sin wave I / p
$I_{r m s}=I \mathrm{~m} / \sqrt{ } 2$
Regulation factor (s \%)
${ }^{*} V_{0} \rightarrow$ no load voltage measured at o/p of rectifier circuit (cross $\mathbb{R}_{\mathcal{L}}$)
${ }^{*} V_{L} \rightarrow$ full load voltage measured at o / p of rectifier circuit

* $\% \mathcal{S}=\left(\left(\mathcal{V}_{0}-\mathcal{V}_{L}\right) / \mathcal{V}_{0}\right){ }^{*} 100$

Example

Si

1- In +ve fralf cycle (diode is on (s.c)) and the o / p is as i / p
Vomax $=10$

$\operatorname{Imax}=10 \mathrm{~m} \mathcal{A}$

2. In -ve half cycle (diode is off (o.c)) and
*o/p current $=(\mathcal{V}$ max $/ \mathcal{R})=(10 / 1 \mathcal{K})=10 m \mathcal{A}$

* voltage on diode when diode is reversed $\mathcal{V D}=\mathcal{V i n m a x}=-10 \mathcal{V}$

Si

