

subject:-

Half wave rectifier (obtaining a unidirectional voltage from alternating)

it is the first application which is used to obtain a unidirectional voltage from bidirectional (alternating) voltage source

 \times

I nput

when the supply is AC source with maximum voltage V_m the supply has two direction of voltage (+ ve & -ve) directions * when the input is +ve half cycle, the diode is forward biased & acts as a short circuit (ideal) or a battery in the 2nd approximation and there is output voltage with maximum value = maximum of I/p signal (ideal) Or = maximum of I/p signal - V_D (practical)

There are three types of voltage to describe sine wave

- 1 Maximum value = peak value
- 2 RMS (root main square) = effective value = maximum value / $\overline{2}$
- 3 average value = DC value = mean value

 V_{DC} = area under the curve / time effective of cycle

1 – for I /p signal

 V_{DC} = area / 2 =₀² (Vm sin wt dwt)/ 2 V_{DC} = zero

2- For output wave form

 $V_{DC} =_0^2$ ($V_m \sin wt dwt$)/ 2 = V_m /

3- If the output wave form

 $V_{DC} = (.5 * V_m + 0)/2 = V_m/4$

 $I_{DC} = V_{DC}/R_L = V_m / R_L$

Note

1- The output has some ripples with factor (r)

r= (RMS of output waveform) / (DC value of output waveform)

 $r = ((I_{rms} / I_{DC}) 2 - 1)^{1/2}$

2- for the output of Half Rectifier of sin wave I/p

 $I_{rms} = I m / 2$

Regulation factor (s %)

* $V_0 \rightarrow$ no load voltage measured at o/p of rectifier circuit (cross R_L)

* % S = ((V_0-V_L)/ V_0)*100

1- In +ve half cycle (diode is on (s.c)) and the o/p is as i/p Vomax= 10

2- In -ve half cycle (diode is off (o.c)) and * o/p current = (Vmax /R)=(10 /1K)=10 mA * voltage on diode when diode is reversed VD = Vinmax = -10 V si

